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ABSTRACT
Conditional graph generation is crucial and challenging since the
conditional distribution of graph topology and feature is compli-
cated and the semantic information is hard to capture by the gen-
erative model. In this work, we propose a novel graph conditional
generative model, Graph Principal Flow Network (GPrinFlowNet),
which enables us to progressively generate high-quality graphs
from low- to high-frequency components for a given graph label.
We show that GPrinFlowNet follows a coarse-to-fine resolution
generation curriculum, which enables it to capture subtle semantic
information by generating intermediate graphs with high mutual
information relative to the graph label. Extensive experiments and
ablation studies showcase that our model achieves state-of-the-art
performance compared to existing conditional graph generation
models. The code is available on Github1.
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1 INTRODUCTION
The task of conditional graph generation is crucial in various do-
mains such as automatic compound discovery, drug design, and
beyond [28, 48, 54, 57, 60]. It requires to generate graph data condi-
tioned on a specific graph label, e.g. graph property, or category. In
general, a graph with 𝑛 nodes is defined as G ≜ (A,X, 𝑦), where
A ∈ R𝑛×𝑛 is the graph adjacency matrix, X ∈ R𝑛×𝑑 is the matrix of
𝑑-dimensional feature vectors of the nodes, and 𝑦 ∈ Z is the graph
label. Suppose the target graph distribution of interest is G, the
goal of unconditional generation is to generate plausible graph sam-
ples from the distribution G without any predefined criteria. For
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instance, this could involve generating grids, whether connected
or disconnected, from the entire available population. On the other
hand, given a label 𝑦, conditional generation aims to generate con-
ditioned graph samples G|𝑦 from the conditional distribution G|𝑦.
This might involve generating connected grids exclusively from
a population of connected ones. To this end, we aim to learn a
generative model 𝑔, such that the conditioned distribution G|𝑦 can
be approximated well by the distribution of 𝑔(𝝐A, 𝝐X;𝑦), where 𝝐A
and 𝝐X are noisy matrices sampled from a given prior distribution
(e.g. a Gaussian distribution).

While there is a considerable amount of work dedicated to un-
conditional graph generation [7, 10, 22, 33, 36, 40, 50, 67], the field
of conditional graph generation is relatively understudied. The
main challenge in conditional graph data generation arises from
two aspects: Firstly, the conditional graph distribution G|𝑦 is highly
complicated, as the relationship between graph features and topol-
ogy varies significantly across different graph labels. Secondly, the
dataset conditioned on a specific 𝑦 typically consists of fewer data
samples, leading to a higher demand for the effectiveness of the
learning model due to data scarcity.

Indeed, unconditional generative models can be transformed
into conditional models through two simple methods: 1) Train an
unconditional model on the dataset fragment of each graph label.
2) Incorporate an extra graph label embedding module [16, 18].
However, existing unconditional models are inherently limited by
their generation curriculum, i.e. the strategy of generating interme-
diate graph samples. In intuition, an ideal conditional generation
curriculum is expected to satisfy the following principles:

1. Easy-to-learn: It should decompose the generation process
into multiple intermediate steps that are easier to learn and
execute.

2. Semantic preservation: Each intermediate state should
strongly correlate with the given graph label, ensuring se-
mantic information preservation throughout the generation
process.

From this perspective, existing likelihood-based models [10, 36,
50] often encounter issues such as generation instability in single-
shot models, and a loss of semantic information in multi-shot mod-
els due to substantial likelihood estimation errors, resulting in lim-
ited generation quality and increased computational overhead [22].
While diffusion-based models [7, 22, 33, 40] achieve state-of-the-
art unconditional generation quality by progressively denoising
corrupted graph data through reverse diffusion SDE, this process
introduces Gaussian noise to each intermediate step, significantly
impairing semantic preservation and leading to incorrectly gener-
ated samples.
Contributions. To address these limitations, we propose a novel
conditional graph generative model, coined Graph Principal Flow
Network (GPrinFlowNet). The key idea is that small eigenvalues
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and their associated eigenvectors (low-frequency principal compo-
nents) of the graph adjacency matrix are closely related to coarse-
resolution graph structure and global graph topological properties
[6, 49]. Thus, the low-frequency component is an ideal starting
point for conditional graph generation, ensuring the model main-
tains label guidance even at early generation steps. Motivated by
this, our GPrinFlowNet incorporates a low-to-high frequency gen-
eration curriculum, wherein the 𝑘-th intermediate generation state
corresponds to the 𝑘 smallest principal components of the desirable
graph adjacency. To effectively follow the low-to-high frequency
curriculum and sample from the intricate conditional distribution,
we build our GPrinFlowNet upon the Generative Flow Network
framework (GFlowNet) [4, 5], a recent advancement in generative
modeling. Our low-to-high frequency curriculum in GPrinFlowNet,
demonstrated by Figure 1, effectively preserves semantic informa-
tion, resulting in accurate and high-quality conditional generation.
The contributions of this paper are three-fold.

• Systematic analysis (Section 4.1) shows that preserving se-
mantic information throughout the generation process im-
proves the conditional generation performance. The low-
to-high frequency curriculum illustrates a strong ability for
semantic information preservation.
• We establish the Graph Principal Flow Network (GPrin-
FlowNet) in Section 4.2 to generate high-quality conditional
graphs using the low-to-high frequency generation curricu-
lum.
• Extensive experiments (Section 5) demonstrate that our GPrin-
FlowNet achieves state-of-the-art conditional graph genera-
tion performance across various real-world datasets.

2 RELATEDWORK
Graph Generation. In recent years, there have been several ad-
vanced graph generation strategies proposed, as outlined in [34,
36, 40, 50, 59, 60] and [23]. Among these, GraphRNN [59] and
GraphVAE [50] generate nodes and edges sequentially with valid-
ity checks, while GAN-based models [10], VAE-based models [36],
flow-based models [60], score-based models [23, 40] generate the
entire graph in an integrative way and exhibit high computational
efficiency due to their node permutation-invariant property, and
spectral-based model [33] generates the graph via spectral diffusion
by reconstructing the graph eigenvalues through the score-based
diffusion. Different from existing graph generation methods, our
proposed GPrinFlowNet networks adopt a novel method for both
generic graph and molecule generation based on GFlowNet. Com-
pared to graph diffusion models such as GDSS [23], our model
can generate graphs according to the conditions faster and more
accurately.
Graph Curriculum Learning. Graph curriculum learning, in-
spired by human learning processes, organizes data samples from
easy to hard to improve the performance of graph learning models
[26, 51]. While various curricula have been proposed for improving
node classification [14, 32, 52, 66], graph classification [1, 8, 15], link
prediction [55, 58], curricula for generative models are relatively
unexplored. GPrinFlowNet introduces a low-to-high frequency gen-
eration curriculum, enhancing conditional generation by preserving
semantic information throughout the process.

Molecular Generation. Molecular generations are often coher-
ent with graph generation methods, which aim at generating valid
meaningfulmoleculeswith high efficiency and uniqueness.Molecules
inherently adopt a graph-like structure with atoms as nodes inter-
connected by bonds, represented as edges, making them an optimal
input for deep learning models. These molecular graphs are com-
monly characterized using three matrices: node feature matrix, edge
feature matrix, and adjacency matrix. Initially stored in the SMILES
format for ease of access, molecules are converted to molecular
graphs using tools such as RDKit [25]. Earlier molecular generation
approaches utilized sequence-based generative models, represent-
ing molecules as SMILES strings. However, these methods often
face challenges from long dependency modeling and have issues
with validity since SMILES strings do not guarantee correctness. As
a result, recent studies have predominantly adopted graph repre-
sentations for molecular structures. A variety of graph generative
models have been introduced, employing methods like variational
auto-encoders [31, 50], generative adversarial networks [2, 10], nor-
malizing flows [35, 48], and graph diffusion models [19, 23]. Our
proposed GPrinFlowNet can generate accurate graph representa-
tions for molecules that satisfy specific properties.
Generative Flow Networks. The Generative Flow Network (GFlo-
wNet) is a recent advancement of generative models [4, 5, 63, 64]
that enables us to model and sample from complicated and in-
tractable compositional distributions in proportional to a given re-
ward function, leading to applications on various domains. [12] pro-
posed the DAG-GFlowNet as an alternative to MCMC for Bayesian
networks inference; [43] applies GFlowNet to tackle the explo-
ration problem in sparse reward environments; [62] proposed the
MLE-GFlowNet to unify over many generative models; [20] ap-
plied GFlowNets on the biological sequence design; [39] adopted
GFlowNets for molecule design and drug discovery. Our GPrin-
FlowNet borrows the philosophy of compositional generation and
the trajectory balance supervision from GFlowNet.

3 PRELIMINARIES
In this paper, we consider generating undirected and weighted
graphs denoted by G ≜ (A,X, 𝑦). Here, A ∈ R𝑛×𝑛 is the adjacency
matrix for 𝑛 nodes with A[𝑖, 𝑗] denoting the connection weight
between nodes 𝑖 and 𝑗 ; X ∈ R𝑛×𝑑 is the 𝑑-dimensional graph
feature matrix; 𝑦 ∈ Z is the graph label representing the graph
category. In addition, we define D ≜ diag(𝑑1, ..., 𝑑𝑛) ∈ R𝑛×𝑛 with
𝑑𝑖 ≜

∑
𝑗 A[𝑖, 𝑗], [𝑛] ≜ {1, ..., 𝑛} and 𝑟 (A) as the rank of A.

Conditional Graph Generation. Let G be the target graph data
distribution, and G|𝑦 denotes the conditional distribution. Given
a specified graph label 𝑦, we aim to generate plausible samples
from G|𝑦 using random noise drawn from a predefined prior 𝜋 ,
i.e. Ĝ ≜ (Â, X̂) = 𝑔𝜽 (𝝐A, 𝝐X;𝑦), where 𝑔𝜽 is a generative model
parameterized by 𝜽 , and 𝝐A and 𝝐X are random matrices drawn
from 𝜋 . A generative model enables multi-step generation via

Ĝ𝑡 ≜ (Â𝑡 , X̂𝑡 ) = 𝑔𝜽 (Ĝ𝑡−1;𝑦), 𝑡 = 1, ...,𝑇 , (1)

where Ĝ0 ≜ (𝝐A, 𝝐X) and Ĝ ≜ Ĝ𝑇 is the final output.
Generation Curriculum. To improve generation quality and sta-
bility, a generation process usually involves a series of intermediate
states G0 → G1 → · · · → G𝑇 , starting from a noisy priori G0 ∼ 𝜋
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and terminating at the final output G𝑇 ∼ G. Here, A𝑡 and X𝑡 de-
note the 𝑡-th intermediate graph adjacency and feature matrix. Each
generated sample undergoes iterative refinement for𝑇 times before
the final output. In this paper, we define “generation curriculum”
as the trajectory comprising of all intermediate states (G0, ...,G𝑇 ).
Noticeably, the generation curriculum defines the ideal genera-
tion strategy regardless of the implementation of the generative
model. In practice, one can manipulate and improve the generation
process of the model by aligning its intermediate generation with
a desired generation curriculum. As one shall see later, our pro-
posed low-to-high frequency generation curriculum preserves the
semantic information well and it significantly improves the model
performance.
Generative Flow Network. A desirable generative framework
needs to be flexible to implement various generation curricula, and
powerful to learn the complicated conditional distribution G|𝑦.
Thus, we develop our framework upon Generative Flow Network
(GFlowNet) [4, 5], an advanced technique for generating composi-
tional discrete objects from complicated distributions. Given the
target data space Ω and a reward function 𝑅(·) : Ω ↦→ R+, a
GFlowNet aims to generate samples x ∈ Ω with a probability pro-
portional to 𝑅(x). To this end, a GFlowNet generates a Markovian
trajectory 𝜏 = (x0, x1, ..., x𝑇 ) following x𝑡 ∼ 𝑃𝐹,𝜽 (x𝑡 |x𝑡−1), where
x𝑇 is the final output, and 𝑃𝐹,𝜽 (·|·) : Ω × Ω ↦→ R+ is termed the
“forward policy”, a learnable transition probability kernel. Start-
ing with x0 drawn from priori 𝜋 , at the 𝑡-th intermediate state, a
GFlowNet accepts the previously constructed object x𝑡−1 and adds
a new building block sampled from 𝑃𝐹,𝜽 (·|x𝑡−1) to produce x𝑡 . We
take x𝑇 as the final output when a termination action is sampled at
step 𝑇 . Therefore, the trajectory probability can be evaluated via
forward decomposition

𝑃 (𝜏) =
∏

𝑡 ∈[𝑇 ]
𝑃𝐹,𝜽 (x𝑡 |x𝑡−1)𝜋 (x0). (2)

Note that a GFlowNet aims to learn a 𝑃𝐹,𝜽 to align the specified
reward 𝑅(x𝑇 ) with the marginal probability 𝑃 (x𝑇 ). However, eval-
uating 𝑃 (x𝑇 ) requires an intractable integration of 𝑃 (𝜏) over all
trajectories terminating at x𝑇 . To circumvent this integration, a
GFlowNet incorporates an auxiliary “backward policy” denoted
by 𝑃𝐵,𝜽 to supervise 𝑃 (𝜏) by minimizing the “trajectory balance”
objective [37],

𝐿tb (𝜏 ;𝜽 ) ≜ ©«log ©«
∏

𝑡 ∈[𝑇 ] 𝑃𝐹,𝜽 (x𝑡 |x𝑡−1)𝜋 (x0)
𝑅 (x𝑇 )
𝑍𝜽

∏
𝑡 ∈[𝑇 ] 𝑃𝐵,𝜽 (x𝑡−1 |x𝑡 )

ª®¬ª®¬
2

,

where 𝑍𝜽 ∈ R+ is a trainable scalar such that 𝑅(·)/𝑍𝜽 is a nor-
malized density function. In intuition, 𝑃𝐵,𝜽 (x𝑡−1 |x𝑡 ) represents the
probability that x𝑡 is constructed from x𝑡−1 at the 𝑡-th intermediate
state. Thus, minimizing 𝐿tb is equivalent to matching the trajectory
probability via either forward or backward Markovian decomposi-
tion. Notably, the supervision signal 𝑅(x𝑇 ) is only provided at the
end of each trajectory. In general, a GFlowNet parameterized by
𝜽 is represented by (𝑃𝐹,𝜽 , 𝑃𝐵,𝜽 , 𝑍𝜽 ), where the forward and back-
ward policies are implemented by two neural networks. During
training, we calculate and minimize 𝐿tb based on 𝑃𝐹,𝜽 , 𝑃𝐵,𝜽 , and 𝑍𝜽 ,
while during sampling and evaluation, we only use 𝑃𝐹,𝜽 to generate
plausible data x𝑇 .

4 CONDITIONAL GENERATION VIA
GPRINFLOWNET

4.1 Low-to-High Frequency Generation
As discussed in Section 1, an ideal curriculum should be a composi-
tion of multiple easy-to-learn intermediate steps. This motivates us
to decompose the graph adjacency generation process into multiple
rank-increasing steps.

Definition 1 (Rank-increasing Curriculum). Following the nota-
tions defined in this paper, a generation curriculum (G0, ...,G𝑇 )
with G𝑡 = (A𝑡 ,X𝑡 ), 𝑡 ∈ [𝑇 ] is called “rank-increasing” if 𝑟 (A𝑠 ) ⩽
𝑟 (A𝑡 ) a.s. holds for any 𝑠 ⩽ 𝑡 .

Intuitively, the rank of graph adjacency is closely related to the
essential information to be learned from it. Therefore, adopting a
rank-increasing curriculum in graph adjacency generation adheres
to the principle of “starting with simplicity and progressing grad-
ually”. As shown in Figure 1, diffusion-based models violate this
principle, as they initiate the generation process from a full-rank
dense Gaussian noise, which deviates from the naturally sparse and
low-rank distribution of graph adjacency matrices.

To design an effective rank-increasing curriculum for conditional
generation, it is essential to preserve the semantic information well
throughout the entire generation process. Hence, each intermediate
generation state can receive strong guidance from the graph label,
even at the very early stage of the generation process, leading to
improved generation accuracy. Motivated by the graph spectral
theory [6, 61] that small frequency components are highly related to
coarse global structure and graph topological property, we propose
the low-to-high frequency generation curriculum to enable graph
learning in a coarse-to-fine manner.

Definition 2 (Low-to-high Frequency Generation Curriculum).
Following the notations defined in this paper, let 𝜋 be a noisy
prior, (A,X) ∼ G be the observed data, let A = U𝚲U⊤ be the
eigen-decomposition of the graph adjacency matrix, where U is
the eigenvector matrix and 𝚲 = diag(𝜆1, ..., 𝜆𝑛) is the diagonal
eigenvalue matrix, with |𝜆1 | ⩽ |𝜆2 | ⩽ · · · ⩽ |𝜆𝑛 |. Then, the low-to-
high frequency generation curriculum is defined as 𝜏 = (G0, ...,G𝑛)
with G𝑇 = (A,X) and

G0 =(𝝐A, 𝝐X) ∼ 𝜋, G𝑡 = (A𝑡 ,X), 0 < 𝑡 < 𝑛, (3)

A𝑡 ≜Â𝑡 − diag(Â𝑡 ), Â𝑡 ≜ U diag(𝜆1, ..., 𝜆𝑡 , 0, ..., 0) U⊤, (4)

The intermediate A𝑡 is reconstructed using the 𝑡 lowest fre-
quency components of the graph adjacency matrix A, capturing
the 𝑡-th slowest varying structural signals of the graph. A smaller
𝑡 results in a coarser approximation of the full graph adjacency
matrix. As 𝑡 increases towards 𝑛, A𝑡 increasingly recovers the full
adjacency matrix. As depicted in Figure 1, this approach imple-
ments a coarse-to-fine strategy for adjacency generation, starting
with a coarse, dense adjacency matrix and progressively refining it
to full resolution. Figure 1 shows that the coarse, dense matrix A𝑡

maintains a strong correlation with the graph label (e.g. graph prop-
erties), effectively preserving semantic information throughout the
generation process.

We quantify the proficiency of the low-to-high frequency gener-
ation curriculum in semantic preservation on the Mutag, Enzymes,
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Conditional generation: reversed diffusion

(a). Conventional diffusion process on graphs

Data degeneration: finer to coarser

(b). Our proposed graph principal flow network

Conditional generation: forward transition

Step 200/1000 Step 400/1000 Step 800/1000 Step 2/10 Step 4/10 Step 8/10

(d) Sample data(a) Sample data (e) Conditional generation by GDSS (f) Conditional generation by GPrinFlow(b) Conditional generation by GDSS (c) Conditional generation by GPrinFlow

Category 1

Category 2

Category 1

Category 2

Figure 1: Visualization of the intermediate generation state of diffusion-basedmodels (top left) and our GPrinFlowNet (top right)
for two graph samples with different labels (𝑦1: disconnected, 𝑦2: connected). The horizontal axis represents the generation
steps. While the low-frequency graph component (green box) proficiently captures the subtle graph label semantic, the fully
corrupted graph (red box) fails to distinguish the connectivity.

and IMDB-binary (IMDB-B) datasets [38]. In this paper, we evaluate
semantic information preservation via average mutual information
defined as follows.

Definition 3 (Average Mutual Information). For any generation
curriculum 𝜏 ≜ (G0, ...,G𝑇 ), the average mutual information of 𝜏
is defined as

𝐼 (𝜏) ≜ 1
𝑇

∑︁
𝑡 ∈[𝑇 ]

𝐼 (G𝑡 ;𝑦), (5)

where 𝐼 (·; ·) is the mutual information.

Intuitively, a high 𝐼 (𝜏) indicates that the correlation between
graph label information remains to be strong throughout the en-
tire generation process, implying that the generation curriculum
𝜏 effectively adheres to the specified condition, resulting in more
accurate conditional generated samples.

We focus on graph adjacency and createmultiple rank-increasing
curriculum candidates. Each curriculum candidate is formed by
adding a frequency component selected randomly from the re-
maining ones. For each dataset, we calculate the average mutual
information for each curriculum following the implementation of
MINE [3]. Finally, we train our GPrinFlowNet model on four repre-
sentative curricula and we evaluate the corresponding performance.
More details can be found in Appendix B.

Each circle point in Figure 2 denotes the estimated mutual infor-
mation 𝐼 (A𝑡 , 𝑦) between a particular intermediate adjacency matrix
and the graph label. Figure 2 reveals that our low-to-high frequency
curriculum achieves nearly the highest average mutual information

Figure 2: Estimated mutual information between different
graph frequency components to the graph label. The x-axis
is the percentage of eigenvalues used for low-resolution re-
construction, and the y-axis is the estimated value of 𝐼 (Â𝑡 , 𝑦).
Each blue point in the figure represents a result of each fre-
quency component. The green curve shows the mutual infor-
mation of our proposed low-to-high frequency generation
curriculum.

compared to other rank-increasing curricula. Additionally, as will
be shown in Table 6, the proposed GPrinFlowNet model (in Section
4.2) demonstrates improved generation quality when supervised
by a curriculum with higher average mutual information. These
empirical results suggest that the low-to-high frequency curricu-
lum is good at preserving strong graph label supervision signals
throughout the generation process, leading to higher generation
performance. Furthermore, the low-to-high frequency curriculum
can be efficiently computed without the need to optimize the mu-
tual information across all possible intermediate state combinations.
Consequently, it turns out to be a desirable conditional generation
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curriculum, meeting both the criteria of being easy to learn and
effectively preserving semantic principles.

4.2 Graph Principal Flow Network
Inspired by the analysis in Section 4.1, we establish a low-to-high fre-
quency graph generation algorithm, coinedGraph Principal Flow
Network. Similar to the GFlowNet philosophy, at each shot, our
GPrinFlowNet generates a graph sample via a Markovian trajectory,
following the aforementioned low-to-high frequency curriculum.

Definition 4 (Graph Principal Flow Network). Following the no-
tations defined in Section 3, the Graph Principal Flow Network
(GPrinFlowNet) is a generalized GFlowNet that generates samples
via a low-to-high principal component curriculum. Let 𝑛 be the
target graph size, 𝑦 be a specified graph label, and 𝜋 be a noisy
priori on R𝑛×𝑛 × R𝑛×𝑑 , at each shot, GPrinFlowNet generates a
Markovian trajectory 𝜏 , with

𝜏 ≜ (Ĝ0, Ĝ1 |𝑦, ..., Ĝ𝑛 |𝑦), Ĝ0 ∼ 𝜋, (6)

Ĝ𝑡 |𝑦 ∼ 𝑃𝐹,𝜽 (· | Ĝ𝑡−1;𝑦), 𝑡 = 1, ..., 𝑛, (7)

where Ĝ𝑡 |𝑦 = (Â𝑡 |𝑦, X̂𝑡 |𝑦) is the 𝑡-th intermediate state, and 𝑃𝐹,𝜽 is
the learnable forward policy determining the one-shot generation
of the successive intermediate state. A GPrinFlowNet is equipped
with a backward policy 𝑃𝐵,𝜽 , modeling the probability of reversing
a one-shot generation step. The forward and backward policies are
required to satisfy the principal trajectory balance criterion, i.e.,

𝑃𝐹,𝜽 (Ĝ𝑡 |Ĝ𝑡−1;𝑦)𝑅(Ĝ𝑡−1)
𝑍𝜽 ,𝑡−1

= 𝑃𝐵,𝜽 (Ĝ𝑡−1 |Ĝ𝑡 ;𝑦)𝑅(Ĝ𝑡 )
𝑍𝜽 ,𝑡

, (8)

where 𝑅(Ĝ𝑡 ) ≜ exp(−𝛼 ∥Ĝ𝑡 − G𝑡 ∥F) is the energy function for
𝑡 = 0, ..., 𝑛, 𝛼 > 0 is a temperature hyperparameter, {𝑍𝜽 ,𝑡−1} are
learnable scalar normalizers, and 𝜏 = (G0, ...,G𝑛) is the defined
low-to-high frequency generation curriculum.

Our GPrinFlowNet differs from the standard GFlowNet in two
key aspects. Firstly, each intermediate state of GPrinFlowNet resides
within a continuous-valued space. Secondly, the principal trajectory
balance criterion imposes supervision to every intermediate state,
and it guides GPrinFlowNet to progressively generate conditional
graph data from lower-frequency to higher-frequency components
by aligning the 𝑖-th intermediate generated graph with the 𝑡-th
granularity level.
Parameterization and Training. We present an effective param-
eterization and training objective for the implementation of GPrin-
FlowNet. Specifically, we set 𝜋 as a standard Gaussian, and we
employ a hierarchical parameterization for the forward policy

Ĝ𝑡 ≜ (Â𝑡 , X̂𝑡 ) ∼ 𝑃𝐴
𝐹,𝜽 (Â𝑡 |Ĝ𝑡−1;𝑦)𝑃𝑋

𝐹,𝜽 (X̂𝑡 |Ĝ𝑡−1;𝑦) .

We define 𝑃𝐴
𝐹,𝜽 by (Â𝑡 |Â𝑡−1, 𝑦) ∼ 𝜆𝑡 û𝑡 û⊤𝑡 + Â𝑡−1, with û𝑡 sampled

from the empirical eigenvector distribution, and

𝜆𝑡 ∼ 𝑁 (𝜇𝜆
𝐹,𝜽 (Ĝ𝑡−1, 𝑦), 𝜎𝜆𝐹,𝜽 (Ĝ𝑡−1, 𝑦)), 𝜆𝑡 ∈ R. (9)

Similarly, we parameterize 𝑃𝑋
𝐹,𝜽 as a learnable Gaussian

(X̂𝑡 |Â𝑡−1, 𝑦) ∼ 𝑁 (𝝁𝑋
𝐹,𝜽 (Ĝ𝑡−1, 𝑦), 𝜎𝑋𝐹,𝜽 (Ĝ𝑡−1, 𝑦)I) . (10)

Here, the means and variances 𝜇𝜆
𝐹,𝜽 , 𝜎

𝜆
𝐹,𝜽 , 𝝁

𝑋
𝐹,𝜽 , and 𝜎

𝑋
𝐹,𝜽 are gener-

ated by 4 multi-layer Graph Convolutional Networks (GCN) [11]

with compatible output dimensions. At each step, we generate a
sample for the next graph adjacency by first sampling the succeed-
ing frequency component and then adding it to the current resolu-
tion’s graph adjacency. In practice, we can apply Gram–Schmidt
orthonormalization to achieve orthonormal û𝑡 . We parameterize
the backward policy 𝑃𝐵,𝜽 in the same way as the forward policy.
With the explicit expressions of the forward and backward poli-
cies, we train GPrinFlowNet by minimizing the principal trajectory
balance objective

𝐿(𝜏 ;𝜽 ) ≜
𝑛∑︁
𝑡=1

©«log
∏𝑡−1

𝑠=0 𝑃𝐹,𝜽 (Ĝ𝑠+1 |Ĝ𝑠 ;𝑦)𝜋 (Ĝ0)
𝑅 (Ĝ𝑡 )
𝑍𝜽 ,𝑡

∏𝑡−1
𝑠=0 𝑃𝐵,𝜽 (Ĝ𝑠 |Ĝ𝑠+1;𝑦)

ª®®¬
2

, (11)

where the normalizers {𝑍𝑖,𝜽 }𝑛𝑖=1 are trainable scalars. In practice,
for each labeled sample (X,A, 𝑦), we first perform the eigendecom-
position ofA. Starting from the initial state Ĝ0 ∼ 𝜋 , we leverage the
forward policy 𝑃𝐹,𝜽 to generate a Markovian trajectory of graph
samples 𝜏 = (Ĝ0, ..., Ĝ𝑛), such that Ĝ𝑡+1 ∼ 𝑃𝐹,𝜽 (Ĝ𝑡+1 |Ĝ𝑡 , 𝑦). Mean-
while, we calculate and store the forward and backward transition
probabilities based on the hierarchical Gaussian parameterization.
Finally, we calculate the principal trajectory balance objective and
average it over a data batch, and we update the neural parameters
𝜽 via stochastic gradient descent. The training process is detailed
in Algorithm 1.
ConditionalGenerationwithGPrinFlowNet.With awell-trained
GPrinFlowNet, we can efficiently generate high-quality conditional
graph data in at most 𝑛 steps, substantially fewer than the steps
required by diffusion-based models. The conditional generation
process is detailed in Algorithm 2.

Algorithm 1 Training GPrinFlowNet
Input: labeled training data S, the forward and backward policy
networks 𝑃𝐹,𝜽 and 𝑃𝐵,𝜽 , learning rate 𝛽 > 0.
Output: 𝑃𝐹,𝜽 , 𝑃𝐵,𝜽 , {𝑍𝜽 ,𝑡 }𝑛𝑡=1
while not converge do

Sample data (A,X, 𝑦) ∼ S
(U,𝚲) ← EigenDecomp(A)
Initialize Ĝ0 ← (X0, 0), X0 ∼ 𝑁 (0, I)
𝐿𝜽 ← 0, 𝐿𝐹 ← 0, 𝐿𝐵 ← 0
for 𝑡 = 1 to 𝑛 do

Ĝ𝑡+1 ∼ 𝑃𝐹,𝜽 (·|Ĝ𝑡 ;𝑦) {Forward transition}
𝐿𝐹 ← 𝐿𝐹 + log 𝑃𝐹,𝜽 (Ĝ𝑡+1 |Ĝ𝑡 ;𝑦)
𝐿𝐵 ← 𝐿𝐵 + log 𝑃𝐵,𝜽 (Ĝ𝑡 |Ĝ𝑡+1;𝑦)
𝐿𝜽 ← 𝐿𝜽 + (𝐿𝐹 − 𝐿𝐵 + log𝑍𝜽 ,𝑡 − log𝑅(Ĝ𝑡 ))2

end for
𝜽 ← 𝜽 − 𝛽∇𝜽𝐿𝜽

end while
return 𝑃𝐹,𝜽 , 𝑃𝐵,𝜽 , {𝑍𝜽 ,𝑡 }𝑛𝑡=1

5 EXPERIMENTS
In this section, we systematically evaluate GPrinFlowNet’s perfor-
mance across various scenarios: conditional generic graph genera-
tion, conditional molecular generation, and unconditional genera-
tion. The experimental settings are detailed in Appendix A.
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Algorithm 2 Conditional Generation with GPrinFlowNet
Input: A target label 𝑦, the forward and the backward policy
networks 𝑃𝐹,𝜽 and 𝑃𝐵,𝜽 , a temperature hyperparameter 𝜎 .
Output: A conditional graph data (Â, X̂).
Initialize Ĝ0 ← (X0, 0), X0 ∼ 𝑁 (0, 𝜎2I)
for 𝑡 = 0 to 𝑛 − 1 do
(𝜆𝑡+1, û𝑡+1, X̂𝑡+1) ∼ 𝑃𝐹,𝜽 (·|Ĝ𝑡 , 𝑦)
Â𝑡+1 ← 𝜆𝑡+1û𝑡+1û⊤𝑡+1 + Â𝑡

Ĝ𝑡+1 ← (Â𝑡+1, X̂𝑡+1) {Forward transition}
end for
return (Â𝑛, X̂𝑛)

5.1 Conditional Graph Generation
Baselines and datasets.We compare our method with the state-
of-the-art graph generation methods, including graph diffusion
methods such as GDSS [22], EDP-GNN [41]; VAE-based methods
such as GraphVAE [50], CondGen [56]; auto-regressive models such
as GraphAF [48], GraphDF [35], GraphRNN [59], CCGG [42]. Al-
though these existing methods focus on unconditional generation,
we modify and extend them for conditional generation by integrat-
ing a graph label embedding module, mirroring the approach we
employed in GPrinFlowNet. We conduct experiments on the follow-
ing datasets: AIDS [38] which contains 2 categories, Enzymes [47]
which consists of 6 categories, and Synthie [13] which contains
4 categories for graph conditional generation. More details of the
datasets and the evaluation metric are discussed in Appendix A.
Results and analysis. Following the graph generation evaluation
setting used in [22], for each category, we adopt the same training
versus test split ratio as [22]. We measure the maximum mean dis-
crepancy (MMD) to compare the distributions of graph statistics
between the same number of generated and test graphs under each
category, including the degree, the clustering coefficient, and the
number of occurrences of orbits with 4 nodes [22, 59]. We report
the average of the degree, clustering coefficient, and the number
of occurrences for each category in Table 1. We also report the
mean MMD as our overall evaluation score under the Avg. col-
umn. As shown in Table 1, our proposed method achieves the best
performance compared with the state-of-the-art graph generation
baselines. Compared to GDSS, a leading graph generation method
using diffusion, our model achieves significantly lower MMD scores
of 2.4× and 3.0× on the Enzymes and Synthie datasets respectively,
demonstrating the effectiveness of our model.

5.2 Conditional Molecular Generation
In addition to generic graph datasets, we further evaluate our GPrin-
FlowNet on conditional molecular generation on the well-known
QM9 dataset [46]. Following previous studies [23, 35], all molecules
are kekulized by the RDKit library [25] with hydrogen atoms re-
moved. We label the molecules to 2 categories according to 𝜇-dipole
moment, 3 categories according to Δ𝜖-gap between 𝜖LUMO and
𝜖HUMO, and 2 categories according to 𝛼-isotropic polarizability. As
shown in Figure 3, the labeling strategy is based on the histogram
of the molecules with different properties. The split is according to
the histogram of the corresponding molecular properties shown in

Figure 3: The histogram of molecules in QM9 dataset with
specified properties: 𝜇-dipole moment (left), gap between
𝜖LUMO and 𝜖HUMO (middle), and 𝛼-isotropic polarizability
(right).

Figure 3. We show the details of molecular category assignments
in Appendix A.

For each category, we evaluate the quality of 10, 000 generated
molecules with their validity, validity w/o check, Frechet Chem-
Net Distance (FCD) [45], Neighborhood Subgraph Pairwise Dis-
tance Kernel (NSPDK) MMD [9], uniqueness [22], and novelty [22].
FCD computes the distance between the test and the generated
molecules using the activations of the penultimate layer of the
ChemNet. NSPDK-MMD computes the MMD between the gener-
ated and the test set, which takes into account both the node and
edge features for evaluation. Generally speaking, FCD measures
the generation quality in the view of molecules in the chemical
space, while NSPDK-MMD evaluates the generation quality from
the graph structure perspective. Besides, following [23], we also
include the “validity w/o correction” metric to evaluate the quality
of molecular generation before the correction procedure. Unlike
“validity” which measures the fraction of the valid molecules after
the correction phase, it computes the fraction of the number of valid
molecules without valency correction or edge resampling overall
generated molecules.
Baselines. We evaluate our model against state-of-the-art molecu-
lar generation models, including auto-regressive methods, GraphAF
[48] and GraphDF [35]. To ensure fair comparisons, as recom-
mended by GDSS [23], we extend GraphAF and GraphDF to account
for formal charges in themolecular generation, termedGraphAF+FC
and GraphDF+FC respectively. Additionally, we also compare our
GPrinflowNet with various representative flow-based and diffusion-
basedmethods, includingMoFlow [60], EDP-GNN [41], Graph-EBM
[30], GDSS [40], and CDGS [19].
Results and analysis.We show the conditional generation results
according to Δ𝜖 - 𝜖LUMO and 𝜖HUMO in Table 2 (left), 𝛼-isotropic
polarizability in Table 2 (middle), and 𝜇-dipole moment (right).
GPrinFlowNet achieves the best performance under most of the
metrics. The highest scores in NSPDK and FCD show that GPrin-
FlowNet can generate molecules with data distributions close to
the real molecules in both the chemical semantic space and graph
representation space. Especially, our model outperforms the state-
of-the-art diffusion-based models, GDSS and CDGS, in most metrics.
Our results verify that our proposed GPrinFlowNet is not only suit-
able for generic graph generation but also proficient in conditional
molecular generation.

5.3 Unconditional Graph Generation
We further evaluate the unconditional graph generation perfor-
mance of our GPrinFlowNet on the following synthetic datasets: 1)
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Table 1: Generation results on the conditional graph generation datasets. We report the MMD distances between the test datasets
and generated graphs. The best results are highlighted in bold (the smaller the better). Hyphen (-) denotes out-of-resources that
take more than 10 days or are not applicable due to memory issues.

AIDS Enzymes Synthie

Real, |𝑉 | ≤ 95, |𝐶 | = 2 Real, |𝑉 | ≤ 125, |𝐶 | = 6 Synthetic, |𝑉 | ≤ 100, |𝐶 | = 4

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

GraphRNN [59] 0.241 0.143 0.034 0.139 0.086 0.294 0.307 0.229 0.247 0.285 0.419 0.317
GraphAF [48] 0.197 0.093 0.026 0.105 0.058 0.174 0.156 0.129 0.137 0.176 0.302 0.205
GraphDF [35] 0.184 0.085 0.031 0.101 0.062 0.196 0.204 0.154 1.681 1.265 0.258 1.068
GraphVAE [50] 0.358 0.284 0.127 0.256 1.249 0.687 0.381 0.772 1.554 1.074 0.232 0.953
GNF [29] 0.224 0.159 0.018 0.133 - - - - - - - -
EDP-GNN [40] 0.127 0.082 0.024 0.077 0.067 0.241 0.225 0.177 0.148 0.185 0.347 0.226
GDSS [22] 0.062 0.049 0.022 0.044 0.038 0.158 0.132 0.109 0.114 0.126 0.269 0.169
CondGen [56] 0.138 0.115 0.032 0.095 0.065 0.184 0.213 0.154 0.151 0.162 0.295 0.202
CCGG [42] 0.097 0.074 0.035 0.068 0.043 0.125 0.117 0.095 0.107 0.159 0.236 0.167
DiGress [53] 0.060 0.048 0.021 0.043 0.033 0.146 0.085 0.088 0.109 0.097 0.158 0.121
GraphARM [24] 0.057 0.052 0.016 0.041 0.031 0.095 0.061 0.062 0.128 0.074 0.127 0.109
EB-GFN [65] 0.094 0.087 0.035 0.072 0.079 0.213 0.227 0.173 0.152 0.164 0.341 0.219

GPrinFlowNet (ours) 0.046 0.031 0.012 0.029 0.027 0.062 0.046 0.045 0.048 0.042 0.079 0.056

Table 2: Experiment results of conditional molecular generation on QM9 dataset. For each molecular sample, we assign three
labels according to its chemical properties, including Δ𝜖-Gap between 𝜖HOMO and 𝜖LUMO (top), 𝛼-isotropic polarizability (middle),
and the 𝜇-dipole moment (bottom). The best results are highlighted in bold.

QM9 𝜖HOMO − 𝜖LUMO 𝛼-isotropic polarizability 𝜇-dipole moment

Methods
VALID w/o
check (%)

↑ NSPDK ↓ FCD ↓ VALID w/o
check (%)

↑ NSPDK ↓ FCD ↓ VALID w/o
check (%)

↑ NSPDK ↓ FCD ↓

GraphAF [48] 67.72 0.059 10.423 67.47 0.063 11.057 67.48 0.049 9.372
GraphAF + FC 74.37 0.053 10.536 74.17 0.055 11.147 74.72 0.053 9.248
GraphDF [35] 82.69 0.108 14.315 82.89 0.117 14.781 82.47 0.094 13.489
GraphDF+FC 93.74 0.121 14.846 93.48 0.134 14.482 93.31 0.114 13.476
MoFlow [60] 91.95 0.059 8.645 91.12 0.064 8.793 91.58 0.053 8.024
EDP-GNN [41] 47.30 0.032 5.642 47.74 0.037 5.884 47.72 0.030 5.081
GraphEBM [30] 8.13 0.096 10.404 8.03 0.104 10.527 8.91 0.087 9.970
GDSS [22] 95.20 0.028 5.417 95.58 0.029 5.863 95.76 0.022 5.047
CDGS [19] 99.41 0.021 3.326 99.44 0.023 3.741 99.17 0.017 3.024

GPrinFlowNet (Ours) 99.72 0.012 2.798 99.74 0.013 2.925 99.79 0.011 2.627

Community-small [59] (12 ≤ 𝑁 ≤ 20): contains 100 small commu-
nity graphs; 2) Enzymes [47] (10 ≤ 𝑁 ≤ 125): contains 578 protein
graphs which represent the protein tertiary structures of the en-
zymes from the BRENDA database; 3) Grid [59] (100 ≤ 𝑁 ≤ 400):
contains 100 standard 2D grid graphs. We compare our model
against the aforementioned state-of-the-art unconditional genera-
tive models. As shown in Table 3, our GPrinFlowNet consistently
achieves the best unconditional generation quality across various
datasets, showing that semantic preservation is also beneficial for
unconditional generation scenarios.

5.4 Generation Speed Analysis
In this section, we benchmark our GPrinFlowNet’s graph genera-
tion speed against 4 baseline methods. Our GPrinFlowNet achieves

superior efficiency for generating 100 samples on various datasets
compared to other baselines, as demonstrated in Table 4. GPrin-
FlowNet’s rapid generation stems from a fast-forward process, out-
performing GDSS (based on graph Gaussian diffusion) by 26× to
58× due to its efficient mechanism and fewer required steps.

5.5 Ablation Studies
Ablation on intermediate supervision. We conduct ablation
studies on how the intermediate supervision provided by the low-
to-high frequency generation curriculum affects the performance
of GPrinFlowNet. We control how frequently the intermediate su-
pervision is computed in the principal trajectory balance objective.
Results in Table 5 show that a stronger alignment between interme-
diate generation states and the low-to-high frequency generation
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Table 3: Generation results on the unconditional graph datasets. We report the MMD distances between the test datasets and
generated graphs. The best results are highlighted in bold (the smaller the better). Hyphen (-) denotes out-of-resources that
take more than 10 days or are not applicable due to memory issues.

Community-small Enzymes Grid

Synthetic, 12 ≤ |𝑉 | ≤ 20 Real, 10 ≤ |𝑉 | ≤ 125 Synthetic, 100 ≤ |𝑉 | ≤ 400

Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

DeepGMG [27] 0.220 0.950 0.400 0.523 - - - - - - - -
GraphRNN [59] 0.080 0.120 0.040 0.080 0.017 0.043 0.021 0.043
GraphAF [48] 0.18 0.200 0.020 0.133 1.669 1.283 0.266 1.073 - - - -
GraphDF [35] 0.060 0.120 0.030 0.070 1.503 1.061 0.202 0.922 - - - -
GraphVAE [50] 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
GNF [29] 0.200 0.200 0.110 0.170 - - - - - - - -
EDP-GNN [40] 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.455 0.238 0.328 0.340
SubspaceDiff [21] 0.057 0.098 0.012 0.056 0.037 0.099 0.018 0.051 0.124 0.013 0.090 0.076
WSGM [17] 0.039 0.084 0.009 0.044 0.034 0.097 0.013 0.048 0.083 0.006 0.065 0.051
GDSS2 [22] 0.045 0.086 0.007 0.046 0.026 0.102 0.009 0.046 0.111 0.005 0.070 0.062

GPrinFlowNet (ours) 0.021 0.068 0.021 0.037 0.021 0.088 0.009 0.039 0.056 0.042 0.015 0.038

Table 4: Graph generation speed comparison (in seconds) for
generating 100 graphs under the methods’ default setting.

Dataset GraphAF GraphDF EDP-GNN GDSS GPrinFlowNet (ours)

Community-small 357 2.47𝑒3 368 72 2.7
Enzymes 596 7.58𝑒3 665 128 10.2
Grid 5.83𝑒3 6.42𝑒4 7.58𝑒3 1.75𝑒3 30.89

curriculum leads to higher generation quality. This alignment helps
GPrinFlowNet effectively learn the distribution of the reconstructed
graph adjacency matrix at various granularity levels.

Table 5: Ablation studies on the supervision scheme. We
report themeanMMDover distributions of degree, clustering
coefficients, and the number of orbits, for conditional graph
generation.

Intermediate Supervision AIDS Enzymes Synthie

No supervision 0.037 0.075 0.086
Supervision per 10 steps 0.035 0.061 0.072
Supervision per 5 steps 0.032 0.054 0.066
Supervision per 2 steps 0.030 0.049 0.058
Supervision in every step 0.029 0.045 0.056

Ablation on generation curricula. We implement and compare
GPrinFlowNets trained with the five representative generation cur-
ricula proposed in Section 4.1, including the low-to-high frequency
curriculum, high-to-low frequency curriculum, and the random cur-
riculum. As shown in Table 6 and Figure 2, the random curriculum
suffers from low average mutual information and the worst aver-
aged generation performance as well. In contrast, our low-to-high
frequency generation curriculum achieves high average mutual
information, highlighting the importance of preserving semantic

information for enhanced conditional graph generation. Notably,
our low-to-high frequency curriculum does not require excessive
calculation and optimization of average mutual information across
all possible rank-increasing curricula.

Table 6: Ablation studies on the eigenvalue generation proce-
dure. We report the mean MMD over distributions of degree,
clustering coefficient, and the number of orbits.

Generation Curriculum AIDS Enzymes Synthie

Random frequency curriculum 0.091 0.124 0.108
High-to-low frequency curriculum 0.047 0.068 0.075
Low-to-high frequency curriculum (ours) 0.029 0.045 0.056

6 CONCLUSION
In this paper, we propose the Graph Principal Flow Network (GPrin-
FlowNet), a conditional generation model that follows a progres-
sive low-to-high frequency graph generation curriculum. Being a
rank-increaing curriculum, GPrinFlowNet decomposes the com-
plicated generation process into multiple easy-to-learn generation
steps. Moreover, empirical experiments show that GPrinFlowNet
is proficient at preserving the subtle yet crucial semantic features
throughout a coarse-to-fine generation process. Thus, the GPrin-
FlowNet provides strong conditional guidance even at the early
stage of generation process. Extensive experiments also show that
our GPrinFlowNet achieves the state-of-the-art performance in
conditional generation on both generic and molecular datasets.
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A EXPERIMENT DETAILS
In this work, all the experiments are conducted with PyTorch [44]
on NVIDIA A100 40GB Tensor Core GPU. In general, we follow a
similar graph generative model evaluation setting as introduced
in [22, 59]. For each experiment, we first preprocess the dataset
and split it into training and testing datasets. For generic graph
datasets, e.g. AIDS, Enzymes, and Synthie, we inherit the original
graph labels. For the QM9 dataset, we impose graph labels on each
molecule according to their chemical properties. Specifically, we use
𝛼-isotropic polarizability, Δ𝜖-the gap between 𝜖HOMO and 𝜖LOMO,
and 𝜇-dipole moment as the category indicators. For isotropic polar-
izability, we categorize molecules with 𝛼 ≤ 78 to the first category,
and the ones with 𝛼 > 78 to the second category. For the gap be-
tween 𝜖HOMO and 𝜖LOMO, we label molecules with Δ𝜖 ≤ 6 the first
category, molecules with 6 < Δ𝜖 ≤ 8 as the second category, and
molecules with Δ𝜖 > 8 as the third category. For dipole moment,
we set molecules with 𝜇 ≤ 3 to category one and 𝜇 > 3 to the other
category.

After training the graph generative model on the training data
to convergence, we employ it to synthesize the same number of
samples as in the testing dataset. Following [22], we assess the
distribution discrepancy between the synthesized dataset and the
evaluation datasets by computing the MMD w.r.t to multiple graph
statistics. The performance of a generative model is evaluated by
the average of the MMD scores of these graph statistics. A lower av-
eraged MMD implies a smaller gap between the synthesized dataset
and the evaluation dataset, indicating that the trained generative
model has a higher generation quality. For generic graph datasets
shown in Section 5.1 and Section 5.3, including Community-small,
Enzymes, Grid, AIDS, and Synthie, we employ three graph statis-
tics, including the degree, clustering coefficient, and orbit. For the
QM9 molecular dataset shown in Section 5.2, while we assess the
gap between the generated dataset and evaluation dataset via the
FCD, NSPDK-MMD, we further evaluate the quality of the gen-
erated molecules based on its chemical validity, uniqueness, and
novelty. For conditional generations, the MMD scores are first cal-
culated for each conditioned dataset segment, i.e. the data with
the sample graph labels. Then, the MMD scores are weighted and
summed according to the marginal distribution of graph labels.
At each experiment setting, we report the average of 3 different
runs for 5 independently trained models. We exactly follow the
dataset pre-processing and post-processing schemes in [22]. The
model hyperparameters are shown in Table 7. We also report the
full experimental results of conditional molecular generation in
Table 8.

B DETAILS OF AVERAGE MUTUAL
INFORMATION ESTIMATION OF
GENERATION CURRICULA

Our goal is to estimate the average mutual information of different
graph generation curricula w.r.t the graph label distribution. To this
end, we estimate the mutual information 𝐼 (A𝑘 , 𝑦) of each interme-
diate step 𝑘 ∈ [𝑛] via Mutual Information Neural Estimation [3]
and then we calculate the mean of each estimated score. To reduce
excessive computation burden, did not traverse all the possible inter-
mediate checkpoints. Instead, we conduct MINE for 10 intermediate
steps, i.e.𝑘 ∈ {⌊0.1𝑛⌋, ..., ⌊0.9𝑛⌋, 𝑛}. Specifically, for each graph data,
we leave the node feature matrix untainted and we conduct eigen-
decomposition on its adjacency matrix A = U𝚲U⊤, and calculate
the 𝑘-th intermediate step as A𝑘 = U diag(𝜆(1) , ..., 𝜆(𝑘 ) , 0, ..., 0) U⊤.
Then, we eliminate the self loops of A𝑘 and we suppress the edges
with values lower than 10−5. For random curricula, 𝜆(1) , ..., 𝜆(𝑛)
is a random permutation of the original eigenvalues, while it is
sorted by magnitude accordingly for the “low-to-high” generation
curricula. Moreover, we augment the graph label 𝑦 with a dense
embedding module with the same dimension as the node feature
dimension. We first feed (A𝑘 ,X) into a 2-layer GCN with hidden
dimension equal to the feature dimension. Then, we concatenate it
with the dense label embedding, and feed it into the MINE estimator,
which is a 4-layer-MLP with hidden dimension equals to the node
feature dimension. All the activation functions are set to be ReLU.
Following the hyperparameters in [3], we train the MINE estimator
on the augmented dataset for 1000 epochs with batch size 128. We
train the MINE estimator with an Adam optimizer with learning
rate 0.0001. We report the largest mutual information estimation
score along the MINE training procedure. We estimate the mutual
information score for 30 randomly generated curricula in total. For
each setting, the MINE training process is repeated 3 times and we
report the average MINE score.

Table 7: Hyperparameters of GPrinFlowNet used in each
experiment.

Hyperparameter Conditional Generation Unconditional Generation

AIDS Enzymes Synthie QM9 Community-small Enzymes Grid

𝑃Λ
𝐹
, 𝑃Λ

𝐵

Number of GCN layers 5 7 5 5 4 5 5
Number of MLP layers 3 2 3 3 4 3 3
Hidden dimension 16 32 16 16 32 32 32
Label embedding dimension 16 32 16 16 32 32 32

𝑃X
𝐹
, 𝑃X

𝐵

Number of GCN layers 5 7 5 5 4 5 5
Number of MLP layers 3 2 3 3 4 3 3
Hidden dimension 16 32 16 16 32 32 32
Label embedding dimension 16 32 16 16 32 32 32

Train

Epochs 5000 5000 5000 1000 5000 5000 5000
Batch size 64 32 64 2048 128 32 8
Exponential Model Averaging 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Optimizer Adam Adam Adam Adam Adam Adam Adam
Learning rate 0.01 0.01 0.01 0.005 0.01 0.01 0.01
Weight decay 0.00001 0.0001 0.00001 0.0001 0.00001 0.0001 0.0001
Gradient norm clipping 1 1 1 1 1 1 1
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Table 8: Full experiment results of conditional molecular generation on QM9 dataset. For each molecular sample, we assign
three class labels according to its Δ𝜖-Gap between 𝜖HOMO and 𝜖LUMO (top), 𝛼-isotropic polarizability (middle), and the 𝜇-dipole
moment (bottom). The best results in the first three metrics are highlighted in bold.

𝜖HOMO − 𝜖LUMO Method
VALID w/o
check (%)

↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%)

Autoreg.

GraphAF 67.72 0.059 10.423 100.00 94.10 88.17
GraphAF+FC 74.37 0.053 10.536 100.00 88.14 86.48
GraphDF 82.69 0.108 14.315 100.00 97.31 98.11

GraphDF+FC 93.74 0.121 14.846 100.00 98.79 98.20

One-shot

MoFlow 91.95 0.059 8.645 100.00 98.47 94.19
EDP-GNN 47.30 0.032 5.642 100.00 99.69 87.82
GraphEBM 8.13 0.096 10.404 100.00 97.61 96.27

GDSS 95.20 0.028 5.417 100.00 98.48 86.94
CDGS 99.41 0.021 3.326 100.00 96.79 69.73

GPrinFlowNet (Ours) 99.72 0.012 2.798 100.00 98.87 94.71

𝛼-isotropic polarizability Method
VALID w/o
check (%)

↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%)

Autoreg.

GraphAF 67.47 0.063 11.057 100.00 94.51 88.63
GraphAF+FC 74.17 0.055 11.147 100.00 88.64 86.59
GraphDF 82.89 0.117 14.781 100.00 97.62 98.10

GraphDF+FC 93.48 0.134 14.482 100.00 98.58 98.54

One-shot

MoFlow 91.12 0.064 8.793 100.00 98.65 94.72
EDP-GNN 47.74 0.037 5.884 100.00 99.25 86.58
GraphEBM 8.03 0.104 10.527 100.00 97.90 97.01

GDSS 95.58 0.029 5.863 100.00 98.46 86.27
CDGS 99.44 0.023 3.741 100.00 96.83 69.62

GPrinFlowNet (Ours) 99.74 0.013 2.925 100.00 98.85 94.72

𝜇-dipole moment Method
VALID w/o
check (%)

↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%)

Autoreg.

GraphAF 67.48 0.049 9.372 100.00 94.51 88.83
GraphAF+FC 74.72 0.053 9.248 100.00 88.64 86.59
GraphDF 82.47 0.094 13.489 100.00 97.62 98.10

GraphDF+FC 93.31 0.114 13.476 100.00 98.58 98.54

One-shot

MoFlow 91.58 0.053 8.024 100.00 98.65 94.72
EDP-GNN 47.72 0.030 5.081 100.00 99.25 86.58
GraphEBM 8.91 0.087 9.970 100.00 97.90 97.01

GDSS 95.76 0.022 5.047 100.00 98.46 86.27
CDGS 99.17 0.017 3.024 100.00 96.83 69.62

GPrinFlowNet (Ours) 99.79 0.011 2.627 100.00 98.64 93.75
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